
Chapter 24. Sample
Programming Exam –

Topic #1

In This Chapter

In this chapter we will look at and offer solutions to three problems from

a sample programming exam. While solving them we will put into practice

the methodology described in the chapter "Methodology of Problem Solving".

Problem 1: Extract Text from HTML Document

We are given HTML file named Problem1.html. Write a program, which

removes all HTML tags and retains only the text inside them. Output should

be written into the file Problem1.txt.

Sample input file for Problem1.html:

<html>
<head><title>Welcome to our site!</title></head>
<body>
<center>

Home
Contacts
About<p>
</center>
</body>
</html>

Sample output file for Problem1.txt:

Welcome to our site!
Home
Contacts
About

986 Fundamentals of Computer Programming with C#

Inventing an Idea

The first thing that occurs to us as an idea for solving this problem is to

read sequentially (e.g. line by line) the input file and to remove any tags. It is

easily seen that all tags starting with the character "<" and end with the

character ">". This also applies to opening and closing tags. This means that

for each line in the file we should remove all substrings starting with "<" and

ending with ">".

Checking the Idea

We have an idea for solving the problem. Whether the idea is correct? First

we should check it. We can ensure it is correct for the sample input file, and

then consider whether there are specific cases where the idea could be

incorrect.

We take a pen and paper and check by manually whether the idea is

correct. We do this by striking out all text substrings that start with the

character "<" and end with the character ">". As we do so, we see that there

is only pure text and any tags disappear:

<html>
<head><title>Welcome to our site!</title></head>
<body>
<center>

Home
Contacts
About<p>
</center>
</body>
</html>

Now we have to think of some more special cases. We do not want to write

200 lines of code and only then think about special case, finding out we have

to redesign the entire program. It is important to check the problematic

situations now, before we begin writing the code of the solution. We can think

of the following special example:

<html><body>
Clickon this
linkfor more info.

This isboldtext.
</body></html>

There are two things to consider:

Chapter 24. Sample Programming Exam – Topic #1 987

- There are tags containing text that open and close at separate lines.

Such tags in our example are <html>, <body> and <a>.

- There are tags that contain text and other tags in themselves (nested

tags). For example <body> and <html>.

What should be the result of this example? If we directly remove all tags we

will get something like this:

Clickon this
linkfor more info.
This isboldtext.

Or maybe we should follow the rules of the HTML language and get the

following result:

Click on this link for more info.
This is bold text.

There are other options, such as putting each piece of text, which is not a

tag, on a new line:

Click
on this
link
for more info.
This is
bold
text.

If we remove all the text in tags and snap the other text, we will get words

that are stuck together. From the task’s description it is not clear if this is

the requested result or it must be as in the HTML language. In the HTML

language each series of separators (spaces, new lines, tabs, etc.) appear as a

space. However, this was not mentioned in the task’s description it is not

clear from the sample input and output.

It is not clear yet whether to print the words that are in a tag which holds

other tags or to skip them. If we print only the contents of the tags, which

consist of text only, we will get something like this:

on this
link
bold

It is yet not clear from the description, how to display the text that

is located on a few lines inside a tag.

988 Fundamentals of Computer Programming with C#

Clarification of the Statement of the Problem

The first thing to do when we find ambiguity in the description of the task is

to read it carefully. In this case the problem statement is not really clear

and does not give us the answers. Probably we should not follow the HTML

rules, because they are not described in the problem statement, but it is not

clear whether to connect the words in neighboring tags or separate them by a

space or new line.

This leaves us only one thing – to ask. If we have an exam, we will ask the

one who gives us the task. In real life, someone is an owner of the software

we develop, and he could answer the questions. If nobody can give an

answer, choose one option that seems most correct under the information we

have and act on it. Assume that we need to print text, which remains after

removing all opening and closing tags, using a blank line separator at the

positions of the tags. If there are blank lines in the text, we keep them. For

our example, we should obtain the following correct output:

Click
on this
link
for more info.
This is
bold
text.

A New Idea for Solving the Problem

So, after adapting these new requirements, the following idea comes: read

file line by line and substitute each tag with a new line. To avoid

duplication of new lines in the resulting file, replace every two consecutive

lines of new results with a new line.

We check the new idea with the example from the original statement of the

problem with our example to ensure it is correct. It remains to implement it.

Break a Task into Subtasks

The task can easily break into 3 subtasks:

- Read the input file.

- Processing of a line of input file: replace tags with a new line.

- Print results in the output file.

Chapter 24. Sample Programming Exam – Topic #1 989

What Data Structures to Use?

In this task we must perform simple word processing and file management.

The question of what data structures to use is not a problem – for word

processing we use string and if necessary – StringBuilder.

Consider the Efficiency

If we read the lines one by one, it will not be a slow operation. Processing of

one line can be done by replacing some characters with others – a quick

operation. We should not have performance problems.

A possible problem could be the clearing of the empty lines. If we collect all

lines in a buffer (StringBuilder) and then remove double blank lines, this

buffer will occupy too much memory for large input files (for example 500 MB

input file).

To save memory, we will try to clean the excess blank lines just after the

replacement tags with the white space character.

Now we examined the idea of solving the task, we ensured that it is good and

covers the special cases that may arise, and believe we will have no

performance issues.

Now we can safely proceed to implementation of the algorithm. We will

write the code step by step to find errors as early as possible.

Step 1 – Read the Input File

The first step solving the given task is reading the input file. In our case it

is a HTML file. This should not bother us, because HTML is a text format.

Therefore, to read it, we will use the StreamReader class. We will traverse

the input file line by line and each line we will derive (for now it is not

important how we will do it) all the information we need (if any) and save it

into an object of type StringBuilder. Extraction we will implement in the

next step (step 2). Let’s write the necessary code for the implementation of

our first step:

string line = string.Empty;
StreamReader reader = new StreamReader("Problem1.html");

while ((line = reader.ReadLine()) != null)
{
 // Find what we need and save it in the result
}

reader.Close();

With this code we will read the input file line by line. Let’s think whether we

have completed a good first step. Do you know what we have missed?

990 Fundamentals of Computer Programming with C#

From the code written we will read the input file, but only if it exists. What if

the input file does not exist or could not be opened for some reason? Our

present decision does not deal with these problems. There is another problem

in our code too: if an error occurs while reading or processing the data file, it

will not be closed.

With File.Existsſ…ƀ we will check if the input file exists. If not – we will

display an appropriate message and stop program execution. To avoid the

second problem we will use the try-catch-finally statement (we may use

the using statement in C# as well). Thus, if an exception arises, we will

process it and will always close the file, which we worked with. We must not

forget that the object of the StreamReader class must be declared outside the

try block, otherwise it will be unavailable in the finally block. This is not a

fatal error, but often made by novice programmers.

It is better to define the input file name as a constant, because we

probably will use it in several places.

Another thing: when reading from a text file it is appropriate to specify

explicitly the character encoding. Let’s see what we get:

using System;
using System.IO;
using System.Text;

class HtmlTagRemover
{
 private const string InputFileName = "Problem1.html";
 private const string Charset = "windows-1251";

 static void Main()
 {
 if (!File.Exists(InputFileName))
 {
 Console.WriteLine(
 "File " + InputFileName + " not found.");
 return;
 }

 StreamReader reader = null;
 try
 {
 Encoding encoding = Encoding.GetEncoding(Charset);
 reader = new StreamReader(InputFileName, encoding);
 string line;
 while ((line = reader.ReadLine()) != null)
 {

Chapter 24. Sample Programming Exam – Topic #1 991

 // Find what we need and save it in the result
 }
 }
 catch (IOException)
 {
 Console.WriteLine(
 "Can not read file " + InputFileName + ".");
 }
 finally
 {
 if (reader != null)
 {
 reader.Close();
 }
 }
 }
}

Test the Input File Reading Code

We handled the described problems and it seems we have implemented

the reading of the input file. We wrote a lot of code. To be convinced that

it is correct, we can test our unfinished code. For example let’s print the
content of the input file to the console, and then try processing nonexistent

files. The writing will be done in a while loop using Console.WriteLineſ…ƀ:

…
while ((line = reader.ReadLine()) != null)
{
 Console.WriteLine(line);
}
…

If we test the piece of code we have with the Problem1.html sample file from

the problem description, the result is correct – the input file itself:

<html>
<head>
<title>Welcome to our site!</title>
</head>
<body>
<center>

Home -

992 Fundamentals of Computer Programming with C#

Contacts -
About<p>
</center>
</body>
</html>

Let’s try a nonexistent file. We change the file name Problem1.html with

Problem2.html. The result is the following:

File Problem2.html not found

We are convinced that the code till now is correct. Let’s move to the next

step of the implementation of our idea (algorithm).

Step 2 – Remove the Tags

Now we want to find a suitable way to remove all tags. How should we do

this?

One possible way is to check the line character by character. For each

character in the current row we will look for the character "<". On the right

side of it we will know that we have a tag (opening or closing). The end tag

character is ">". So we can find tags and remove them. To not get the words

connected between adjacent tags, each tag will be replaced with the character

for a blank line "\n".

The algorithm is simple to implement, but isn’t there a more clever way? Can

we use regular expressions? They can easily look for tags and replace them

with "\n", right? In the same time the code will be simple and in case of

errors, they will be removed more easily. We will consider this option. What

should we do? First we need to write a regular expression. Here is how it may

look:

<[^>]*>

The idea is simple: any string, that starts with "<", continues with arbitrary

sequence of characters, other than ">" and ends with ">" is an HTML tag.

Here’s how we can replace the tags with a new line:

private static string RemoveAllTags(string str)
{
 string textWithoutTags = Regex.Replace(str, "<[^>]*>", "\n");
 return textWithoutTags;
}

After coding this step, we should test it. For this purpose again we print to the

console the strings we found via Console.WriteLineſ…ƀ. And test the code:

Chapter 24. Sample Programming Exam – Topic #1 993

HtmlTagRemover.cs

using System;
using System.IO;
using System.Text;
using System.Text.RegularExpressions;

class HtmlTagRemover
{
 private const string InputFileName = "Problem1.html";
 private const string Charset = "windows-1251";

 static void Main()
 {
 if (!File.Exists(InputFileName))
 {
 Console.WriteLine(
 "File " + InputFileName + " not found.");
 return;
 }

 StreamReader reader = null;
 try
 {
 Encoding encoding = Encoding.GetEncoding(Charset);
 reader = new StreamReader(InputFileName, encoding);
 string line;
 while ((line = reader.ReadLine()) != null)
 {
 line = RemoveAllTags(line);
 Console.WriteLine(line);
 }
 }
 catch (IOException)
 {
 Console.WriteLine(
 "Can not read file " + InputFileName + ".");
 }
 finally
 {
 if (reader != null)
 {
 reader.Close();
 }

994 Fundamentals of Computer Programming with C#

 }
 }

 private static string RemoveAllTags(string str)
 {
 string strWithoutTags =
 Regex.Replace(str, "<[^>]*>", "\n");
 return strWithoutTags;
 }
}

Testing the Tag Removal Code

Let’s test the program with the following input file:

<html><body>
Clickon this
linkfor more info.

This isboldtext.
</body></html>

The result is as follows:

(empty rows)

Click
on this
link
for more info.
(empty row)

This is
bold
text.
(empty rows)

Everything works perfectly, only that we have extra blank lines. Can we

remove them? This will be our next step.

Step 3 – Remove the Empty Lines

We can remove unnecessary blank lines, replacing a double blank line "\n\n"

with a single blank line "\n". We should not have groups of more than one

character for a new line "\n". Here is an example how we can perform the

substitution:

private static string RemoveDoubleNewLines(string str)

Chapter 24. Sample Programming Exam – Topic #1 995

{
 return str.Replace("\n\n", "\n");
}

Testing the Empty Lines Removal Code

As always, before we move forward, we test whether the method works

correctly. We try a text, which has no blank rows, and then add 2, 3, 4 and 5

blank lines, including at the beginning and at the end of text.

We find that the above method does not work correctly, when there are

4 blank lines one after another. For example, if we submit as input

"ab\n\n\n\ncd", we will get "ab\n\n\cd" instead of "ab\ncd". This defect

occurs because the Replaceſ…ƀ finds and replaces a single match, scanning

the text from left to right. If in result of a substitution the searched string

reappears, it is skipped.

See how useful it is when each method is tested on time. We do not end up

wondering why the program does not work when we have 200 lines of code,

full of errors. Early detection of defects is very useful and we should do it

whenever possible. Here is the corrected code:

private static string RemoveDoubleNewLines(string str)
{
 string pattern = "[\n]+";
 return Regex.Replace(str, pattern, "\n");
}

The above code uses a regular expression to find any sequence of \n

characters and replaces it with a single \n.

After a series of tests, we are convinced that the method works

correctly. We are ready to test the program that removes all unnecessary

newlines. For this purpose we make the following changes:

while ((line = reader.ReadLine()) != null)
{
 line = RemoveAllTags(line);
 line = RemoveDoubleNewLines(line);
 Console.WriteLine(line);
}

We test the code again. Still it seems there are blank lines. Where do they

come from? Perhaps, if we have a line that contains only tags, it will cause a

problem. Therefore we may prevent this case. We add the following checks:

if (!string.IsNullOrEmpty(line))

996 Fundamentals of Computer Programming with C#

{
 Console.WriteLine(line);
}

This removes most of the blank lines, but not all.

Remove the Empty Lines: Second Attempt

If we think more, it could happen so, that a line begins or ends with a tag.

Then this tag will be replaced with a single blank line and so at the beginning

or at the end of the line we may get a blank line. This means that we should

clean the empty rows at the beginning and at the end of each line. Here’s how

we can make the cleaning:

private static string TrimNewLines(string str)
{
 int start = 0;
 while (start < str.Length && str[start] == '\n')
 {
 start++;
 }

 int end = str.Length - 1;
 while (end >= 0 && str[end] == '\n')
 {
 end--;
 }

 if (start > end)
 {
 return string.Empty;
 }

 string trimmed = str.Substring(start, end - start + 1);
 return trimmed;
}

The method works very simply: goes from left to right and skips all newline

characters. Then passes from right to left and skips again all newline

characters. If the left and right positions have passed each other, this means

that the string is either empty or contains only newlines. Then the method

returns an empty string. Otherwise it returns back everything to the right of

the start position and to the left of the end position.

Chapter 24. Sample Programming Exam – Topic #1 997

Remove the Empty Lines: Test Again

As always, we test whether the above method works correctly with

several examples, including an empty string, no string breaks, string breaks

left or right or both sides and a string with new lines. We make sure, that the

method now works correctly.

Now we have to modify the logic of processing the input file:

while ((line = reader.ReadLine()) != null)
{
 line = RemoveAllTags(line);
 line = RemoveDoubleNewLines(line);
 line = TrimNewLines(line);
 if (!string.IsNullOrEmpty(line))
 {
 Console.WriteLine(line);
 }
}

Step 4 – Print Results in a File

It remains to print the results in the output file. To print the results in the

output file we will use the StreamWriter. This step is trivial. We must only

consider that writing to a file can cause an exception and that’s why we need

to change the logic for error handling slightly, opening and closing the flow of

input and output to the file.

Here is what we finally get as a complete source code of the program:

HtmlTagRemover.cs

using System;
using System.IO;
using System.Text;
using System.Text.RegularExpressions;

class HtmlTagRemover
{
 private const string InputFileName = "Problem1.html";
 private const string OutputFileName = "Problem1.txt";
 private const string Charset = "windows-1251";

 static void Main()
 {
 if (!File.Exists(InputFileName))
 {

998 Fundamentals of Computer Programming with C#

 Console.WriteLine(
 "File " + InputFileName + " not found.");
 return;
 }

 StreamReader reader = null;
 StreamWriter writer = null;
 try
 {
 Encoding encoding = Encoding.GetEncoding(Charset);
 reader = new StreamReader(InputFileName, encoding);
 writer = new StreamWriter(OutputFileName, false,
 encoding);

 string line;
 while ((line = reader.ReadLine()) != null)
 {
 line = RemoveAllTags(line);
 line = RemoveDoubleNewLines(line);
 line = TrimNewLines(line);
 if (!string.IsNullOrEmpty(line))
 {
 writer.WriteLine(line);
 }
 }
 }
 catch (IOException)
 {
 Console.WriteLine(
 "Can not read file " + InputFileName + ".");
 }
 finally
 {
 if (reader != null)
 {
 reader.Close();
 }

 if (writer != null)
 {
 writer.Close();
 }
 }
 }

Chapter 24. Sample Programming Exam – Topic #1 999

 /// <summary>
 /// Replaces every tag with new line
 /// </summary>
 private static string RemoveAllTags(string str)
 {
 string strWithoutTags =
 Regex.Replace(str, "<[^>]*>", "\n");
 return strWithoutTags;
 }

 /// <summary>
 /// Replaces sequence of new lines with only one new line
 /// </summary>
 private static string RemoveDoubleNewLines(string str)
 {
 string pattern = "[\n]+";
 return Regex.Replace(str, pattern, "\n");
 }

 /// <summary>
 /// Removes new lines from start and end of string
 /// </summary>
 private static string TrimNewLines(string str)
 {
 int start = 0;
 while (start < str.Length && str[start] == '\n')
 {
 start++;
 }

 int end = str.Length - 1;
 while (end >= 0 && str[end] == '\n')
 {
 end--;
 }

 if (start > end)
 {
 return string.Empty;
 }

 string trimmed = str.Substring(start, end - start + 1);
 return trimmed;

1000 Fundamentals of Computer Programming with C#

 }
}

Testing the Solution

Until now, we were testing the individual steps for the solution of the task.

Through the tests of individual steps we reduced the possibility of errors, but

that does not mean that we should not test the whole solution. We may have

missed something, right? Now let’s thoroughly test the code.

- Test with the sample input file from the problem statement. Everything

works correctly.

- Test our "complex" example. Everything works fine.

- Test the border cases and run an output test.

- We test with a blank file. Output is correct – an empty file.

- Test with a file that contains only one word "Hello" and does not

contain tags. The result is correct – the output contains only the word

"Hello".

- Test with a file that contains only tags and no text. The result is

again correct – an empty file.

- Try to put blank lines of at the most amazing places in the input file.

These empty lines should all be removed. For example we can run the

following test:

 Hello

I am here

I am not here

The result is as follows:

 Hello
I
 am here
I am not
Here

It seems we found a small defect. There is a space at the beginning of

some of the lines.

Chapter 24. Sample Programming Exam – Topic #1 1001

Fixing the Leading Spaces Defect

Under the problem description it is not clear whether this is a defect but let’s

try to fix it. We could add the following code when processing the next line of

the input file:

line = line.Trim();

The defect is fixed, but only from the first line. We run the debugger and we

notice why it is so. The reason is that we print into the output file a string of

characters with value "I\n am here" and so we get a space after a blank line.

We can correct the defect, by replacing all blank lines, followed by white

space (blank lines, spaces, tabs, etc.) with a single blank line. Here is the

correction:

private static string RemoveDoubleNewLines(string str)
{
 string pattern = "\n\\s+";
 return Regex.Replace(str, pattern, "\n");
}

We fixed that error too. Now we have only to change this name to a more

appropriate one, for example RemoveNewLinesWithWhiteSpace(…).

Now we need to test again after the “fixes” in the code (regression test).

We put new lines and spaces scattered randomly and make sure that

everything works correctly now.

Performance Test

One last test remains: performance. We can create easily create a large

input file. We open a site, for example http://www.microsoft.com, grab the

source code and copy it 1000 times. We get a large enough input file. In our

case, we get a 44 MB file with 947,000 lines. Processing it takes under 10

seconds, which is a perfectly acceptable speed. When we test the solution

we should not forget that the processing of the file depends on our hardware

(our test was performed in 2009 on an average fast laptop).

Taking a look at the result, however, we notice a very troublesome problem.

There are parts of a tag. More precisely, we see the following:

<!--
var s_pageName="home page"
//-->

It quickly becomes clear that we missed a very interesting case. In an

HTML tag can be closed few lines after its opening, e.g. a single tag may

span several consecutive lines. That was exactly our case: we have a

http://www.microsoft.com/

1002 Fundamentals of Computer Programming with C#

comment tag that contains JavaScript code. If the program worked correctly,

it would have cut the entire tag rather than keep it in the source file.

Did you see how testing is useful and how testing is important? In some

big companies (like Microsoft) having a solution without tests is considered as

only 50% of the work. This means that if you write code for 2 hours, you

should spend on testing (manual or automated) at least 2 more hours! This is

the only way to create high-quality software.

What a pity that we discovered the problem just now, instead of at the

beginning, when we were checking whether our idea for the task is correct,

before we wrote the program. Sometimes it happens, unfortunately.

How to Fix the Problem with the Tag at Two Lines?

The first idea that occurs to us is to load in memory the entire input file

and process it as one big string rather than row by row. This is an idea that

seems to work but will run slow and consume large amounts of memory.

Let’s look for another idea.

A New Idea: Processing the Text Char by Char

Obviously we cannot read the file line by line. Can we read it character

by character? If yes, how we will treat tags? It occurs to us that if we read

the file character by character, we can know at any moment, whether we are

in or outside of a tag, and if we are outside the tag, we can print everything

that we read (followed by a new line). We need to avoid adding new lines, as

well as and trailing whitespace. We will get something like this:

bool inTag = false;
while (! <end of file is reached>)
{
 char ch = (read the next character);
 if (ch == '<')
 {
 inTag = true;
 }
 else if (ch == '>')
 {
 inTag = false;
 }
 else
 {
 if (!inTag)
 {
 PrintBuffer(ch);
 }
 }

Chapter 24. Sample Programming Exam – Topic #1 1003

}

Implementing the New Idea

The idea is very simple and easy to implement. If we implement it

directly, we will have a problem with empty lines and the problem of merging

text from adjacent tags. To solve this problem, we can accumulate the text in

the StringBuilder and print it at the end of file or when switching from text

to a tag. We will get something like this:

bool inTag = false;
StringBuilder buffer = new StringBuilder();
while (! <end of file is reached>)
{
 char ch = (read the next character);
 if (ch == '<')
 {
 if (!inTag)
 {
 PrintBuffer(buffer);
 }
 buffer.Clear();
 inTag = true;
 }
 else if (ch == '>')
 {
 inTag = false;
 }
 else
 {
 if (!inTag)
 {
 buffer.Append(ch);
 }
 }
}
PrintBuffer(buffer);

The missing PrintBufferſ…ƀ method should clean the whitespace from the

text in the buffer and print it in the output followed by a new line. Exception is

when we have whitespace only in the buffer (it should not be printed).

We already have most of the code, so step-by-step implementation mat

not be necessary. We can just replace the pieces of wrong old code with the

new code implementing the new idea. If we add the logic for avoiding empty

1004 Fundamentals of Computer Programming with C#

lines as well as reading input and writing the result we obtain is a complete

solution to the task with the new algorithm:

SimpleHtmlTagRemover.cs

using System;
using System.IO;
using System.Text;
using System.Text.RegularExpressions;

public class SimpleHtmlTagRemover
{
 private const string InputFileName = "Problem1.html";
 private const string OutputFileName = "Problem1.txt";
 private const string Charset = "windows-1251";
 private static Regex regexWhitespace = new Regex("\n\\s+");

 static void Main()
 {
 if (!File.Exists(InputFileName))
 {
 Console.WriteLine(
 "File " + InputFileName + " not found.");
 return;
 }

 StreamReader reader = null;
 StreamWriter writer = null;
 try
 {
 Encoding encoding = Encoding.GetEncoding(Charset);
 reader = new StreamReader(InputFileName, encoding);
 writer = new StreamWriter(OutputFileName, false,
 encoding);
 RemoveHtmlTags(reader, writer);
 }
 catch (IOException)
 {
 Console.WriteLine(
 "Cannot read file " + InputFileName + ".");
 }
 finally
 {
 if (reader != null)
 {

Chapter 24. Sample Programming Exam – Topic #1 1005

 reader.Close();
 }
 if (writer != null)
 {
 writer.Close();
 }
 }
 }

 /// <summary>Removes the tags from a HTML text</summary>
 /// <param name="reader">Input text</param>
 /// <param name="writer">Output text (result)</param>
 private static void RemoveHtmlTags(
 StreamReader reader, StreamWriter writer)
 {
 StringBuilder buffer = new StringBuilder();
 bool inTag = false;
 while (true)
 {
 int nextChar = reader.Read();
 if (nextChar == -1)
 {
 // End of file reached
 PrintBuffer(writer, buffer);
 break;
 }
 char ch = (char)nextChar;
 if (ch == '<')
 {
 if (!inTag)
 {
 PrintBuffer(writer, buffer);
 }
 buffer.Clear();
 inTag = true;
 }
 else if (ch == '>')
 {
 inTag = false;
 }
 else
 {
 // We have other character (not "<" or ">")
 if (!inTag)

1006 Fundamentals of Computer Programming with C#

 {
 buffer.Append(ch);
 }
 }
 }
 }

 /// <summary>Removes the whitespace and prints the buffer
 /// in a file</summary>
 /// <param name="writer">the result file</param>
 /// <param name="buffer">the input for processing</param>
 private static void PrintBuffer(
 StreamWriter writer, StringBuilder buffer)
 {
 string str = buffer.ToString();
 string trimmed = str.Trim();
 string textOnly = regexWhitespace.Replace(trimmed, "\n");
 if (!string.IsNullOrEmpty(textOnly))
 {
 writer.WriteLine(textOnly);
 }
 }
}

The input file is read character by character with the class StreamReader.

Originally the buffer for accumulating of text is empty. In the main loop we

analyze each read character. We have the following cases:

- If we get to the end of file, we print whatever is in the buffer and the

algorithm ends.

- When we encounter the character "<" (start tag) we first print the

buffer (if we find that the transition is from text to tag). Then we clear

the buffer and set inTag = true.

- When we encounter the character ">" (end tag) we set inTag = false.

This will allow the next characters after the tag to accumulate in the

buffer.

- When we encounter another character (text or blank space), it is

added to the buffer, if we are outside tags. If we are in a tag the

character is ignored.

Printing of the buffer takes care of removing empty lines in text and

clearing the empty space at the beginning and end of text (trimming the

leading and trailing whitespace). How exactly we do this, we already

discussed in the previous solution of the problem.

Chapter 24. Sample Programming Exam – Topic #1 1007

In the second solution the processing of the buffer is much lighter and

shorter, so the buffer is processed immediately before printing.

In the previous solution of the task we used regular expressions for replacing

with the static methods of the class Regex. For improved performance now

we create the regular expression object just once (as a static field). Thus

the regular expression pattern is compiled just once to a state machine.

Testing the New Solution

It remains to test thoroughly the new solution. We have to perform all

tests conducted on the previous solution. Add test with tags, which are spread

over several lines. Again, test performance with the Microsoft website copied

1000 times. Assure that the program works correctly and is even faster.

Let’s try with another site, such as the official website of this book –

http://www.introprogramming.info (as of April 2011). Again, take the source

code of the site and run the solution of our task with it. After carefully

reviewing the input data (source code on the website of the book) and the

output file, we notice that there is a problem again. Some content of this

tag is printed in the output file:

<!--

Read the free book by Svetlin Nakov and team for developing with
Java.
…
…
-->

Where Is the Problem?

The problem seems to occur when one tag meets another tag, before the

first tag is closed. This can happen in HTML comments. Here’s how to get to

the error:

<!--

…

As we know, in the solution of the task we use Boolean variable (inTag), to

know whether the current character is in the tag or not. On the figure above

we have shown that in moment 1 we set inTag = true. So far so good. Then

comes moment 2, where the current character read is ">". At this point we

find inTag = false. The problem is that the tag, which is open from moment

1 is not yet closed, and the Boolean variable indicates that we are not in the

1. InTag = true

2. InTag = false

http://www.introprogramming.info/

1008 Fundamentals of Computer Programming with C#

tag anymore and the following characters are saved in the buffer. If between

the two tags for a new line (
) we have text, it would also be saved in

the buffer.

How to Fix the Problem?

It turned out that in the second solution there is a mistake. The program

does not work correctly in the presence of nested tags in a comment tag.

By Boolean variable can only know whether we are in a tag or not, but cannot

remember if we are still in the preceding. This tells us that instead of using a

Boolean variable, we can store the number of tags in which we are (in

variable of type int – tag counter). We will modify the solution:

int openedTags = 0;
StringBuilder buffer = new StringBuilder();
while (! <end of file is reached>)
{
 char ch = (read the next character);
 if (ch == '<')
 {
 if (openedTags == 0)
 {
 PrintBuffer(buffer);
 }
 buffer.Remove(0, buffer.Length);
 openedTags++;
 }
 else if (ch == '>')
 {
 openedTags--;
 }
 else
 {
 if (openedTags == 0)
 {
 buffer.Append(ch);
 }
 }
}
PrintBuffer(buffer);

In the main loop we analyze each read character. We have the following

cases:

- If we get to the end of the file, print whatever is in the buffer and the

algorithm ends.

Chapter 24. Sample Programming Exam – Topic #1 1009

- When we encounter the character "<" (start tag) first we print the

buffer (if we find that the transition from text to the tag). Then we clear

the buffer and increase the counter by one.

- When we encounter the character ">" (end tag) we reduce the

counter by one. Closing of a nested tag will not allow accumulation in

the buffer. If after closing a tag we are out of all tags, the characters will

begin to accumulate in the buffer.

- When we encounter another character (text or blank space), it is

added to the buffer, if we are outside all tags. If we are inside a tag –

the character is ignored.

It remains to write the whole solution again and then test it. The logic

for reading the input file and printing the buffer remains the same:

SimpleHtmlTagRemover.cs

using System;
using System.IO;
using System.Text;
using System.Text.RegularExpressions;

public class SimpleHtmlTagRemover
{
 private const string InputFileName = "Problem1.html";
 private const string OutputFileName = "Problem1.txt";
 private const string Charset = "windows-1251";
 private static Regex regexWhitespace = new Regex("\n\\s+");

 static void Main()
 {
 if (!File.Exists(InputFileName))
 {
 Console.WriteLine(
 "File " + InputFileName + " not found.");
 return;
 }

 StreamReader reader = null;
 StreamWriter writer = null;
 try
 {
 Encoding encoding = Encoding.GetEncoding(Charset);
 reader = new StreamReader(InputFileName, encoding);
 writer = new StreamWriter(OutputFileName, false,
 encoding);

1010 Fundamentals of Computer Programming with C#

 RemoveHtmlTags(reader, writer);
 }
 catch (IOException)
 {
 Console.WriteLine(
 "Cannot read file " + InputFileName + ".");
 }
 finally
 {
 if (reader != null)
 {
 reader.Close();
 }
 if (writer != null)
 {
 writer.Close();
 }
 }
 }

 /// <summary>Removes the tags from a HTML text</summary>
 /// <param name="reader">Input text</param>
 /// <param name="writer">Output text (result)</param>
 private static void RemoveHtmlTags(
 StreamReader reader, StreamWriter writer)
 {
 int openedTags = 0;
 StringBuilder buffer = new StringBuilder();
 while (true)
 {
 int nextChar = reader.Read();
 if (nextChar == -1)
 {
 // End of file reached
 PrintBuffer(writer, buffer);
 break;
 }
 char ch = (char)nextChar;
 if (ch == '<')
 {
 if (openedTags == 0)
 {
 PrintBuffer(writer, buffer);
 buffer.Length = 0;

Chapter 24. Sample Programming Exam – Topic #1 1011

 }
 openedTags++;
 }
 else if (ch == '>')
 {
 openedTags--;
 }
 else
 {
 // We aren't in tags (not "<" or ">")
 if (openedTags == 0)
 {
 buffer.Append(ch);
 }
 }
 }
 }

 /// <summary>Removes the whitespace and prints the buffer
 /// in a file</summary>
 /// <param name="writer">the result file</param>
 /// <param name="buffer">the input for processing</param>
 private static void PrintBuffer(
 StreamWriter writer, StringBuilder buffer)
 {
 string str = buffer.ToString();
 string trimmed = str.Trim();
 string textOnly = regexWhitespace.Replace(trimmed, "\n");
 if (!string.IsNullOrEmpty(textOnly))
 {
 writer.WriteLine(textOnly);
 }
 }
}

Testing the New Solution

Again we test the solution of the problem. We perform all tests made on

the previous solution (see section "Testing the Solution"). We also try the site

of MSDN (http://msdn.microsoft.com). Let’s carefully check the output file.

We can see that at its end the file contains wrong characters (in April 2011).

After carefully reviewing the source code of the MSDN site, we notice that

there is an incorrect representation of the character ">" (to visualize this

character in the HTML document ">" should be used, not ">"). However,

this is an error in the MSDN site, not in our program.

http://msdn.microsoft.com/

1012 Fundamentals of Computer Programming with C#

Now it remains to test the performance of our program with the site of this

book (http://www.introprogramming.info) copied 1000 times. We assure that

the program works fast enough for it too.

Finally we are ready for the next task.

Problem 2: Escape from Labyrinth

We are given a labyrinth, which consists of N x N squares and each of it

can be passable (0) or not (x). Our hero Jack is in one of the squares (*):

x x x x x x

0 x 0 0 0 x

x * 0 x 0 x

x x x x 0 x

0 0 0 0 0 x

0 x x x 0 x

Two of the squares are neighboring, if they have a common wall. In one

step Jack can pass from one passable square to its neighboring passable

square. If Jack steps in a cell, which is on the edge of the labyrinth, he can go

out from the labyrinth with one step.

Write a program, which by a given labyrinth prints the minimal number of

steps, which Jack needs, to go out from the labyrinth or -1 if there is no

way out.

The input data is read from a text file named Problem2.in. On the first line of

the file is the number N (2 < N < 100). On the each of next N lines there are

N characters, each of them is either "0" or "x" or "*". The output is one

number and must be in the file Problem2.out.

Sample input – Problem2.in:

6
xxxxxx
0x000x
x*0x0x
xxxx0x
00000x
0xxx0x

Sample output – Problem2.out:

9

http://www.introprogramming.info/

Chapter 24. Sample Programming Exam – Topic #1 1013

Figure Out an Idea for a Solution

We have a labyrinth and we should find the shortest path in it. This is not

an easy task and we should think a lot or we should read somewhere how to

solve such kinds of tasks.

Our algorithm will begin its movement from the initial point we are given. We

know we can move to a neighboring cell horizontally or vertically, but not

diagonally. Our algorithm must traverse the labyrinth in some way, to find the

shortest path in it. How to traverse the cells in the labyrinth?

One possible decision is the following: we start from the initial cell. Move to

one of its neighboring cells, after this in a neighboring cell of the current

(which is passable and still unvisited), after this in a neighboring cell of the

last visited (which is passable and still unvisited) and we go on forward

recursively until we reach an exit of the labyrinth, or we reach a place where

we can’t continue (there is no neighboring cell which is free or unvisited). In

this moment we go back from the recursion (to the previous cell) and visit

another neighboring cell for the previous cell. If we can’t continue, we go back

again. The described recursive process is the process of traversing the

labyrinth in depth (remember the chapter "Recursion" and DFS traversal).

The question “Is it needed to walk through one cell more than once” occurs to
us? If we walk through one cell at most once, we can walk through the whole

labyrinth faster and if there is an exit, we will find it. But will this be the

minimal path? If we draw the whole process on a paper, we will find out

quickly the path will not be the minimal.

If we mark the cell we leave on the way back of the recursion as free, this will

allow us to reach each cell repeatedly, coming from a different path. The full

recursive walk of the labyrinth will find all possible paths from the

initial cell to any other cell. From all the found paths we can choose the

shortest path to a cell on the bound of the labyrinth (exit) and that’s how we

will find a solution for the problem.

Verification of the Idea

It seems we have an idea for solving the problem: with recursive walk we

find all the possible paths in the labyrinth from the initial cell to a cell on

the bounds of the labyrinth and from all these paths we choose the shortest

one. Let’s check the idea.

We take a sheet of paper and make one example of the labyrinth. We try the

algorithm. It’s obvious it finds all the paths from the initial cell to the one of

the exits and it travels a lot forwards-backwards. As a result it finds all exits

and among all paths it can be chosen the shortest one.

Does the idea work if there is no exit? We create a second labyrinth, which

is without exit. We try out the algorithm on it, again on a sheet of paper. We

see after long circulation forwards-backwards that the algorithm does not find

an exit and finishes.

1014 Fundamentals of Computer Programming with C#

It looks we have a correct idea for solving the problem. Let’s move forward

and think for the data structures.

What Data Structures to Use?

First, we have to decide how to store the labyrinth. It’s natural to use a

matrix of characters, just as the one on the figure. We will consider that one

cell is passable and we can enter it, if it has a character, different from the

character 'x'. We can store the labyrinth in a matrix of numbers and Boolean

values, but the difference is not significant. The matrix of characters is

comfortable for printing, and this will help us while debugging. There are not

many options. We will store the labyrinth in a matrix of characters.

After this, we have to decide in what structure to keep the visited through

the recursion (current path) cells. We always need the last visited cell. This

leads us to a structure, which is “last in, first out”, i.e. stack. We can use

Stack<Cell>, where Cell is a class, containing the coordinates of one cell

(number of row and number of column). It remains to think where to keep

the found paths, to find the shortest of them. If we think of it, it is not

necessary to keep all the paths. It is enough to keep the current path and the

shortest till this moment. It’s not even necessary to keep the shortest path till

this moment but only its length. Every time we find a path to an exit of the

labyrinth we can take its length and if it is shorter than the shortest path to

this moment to keep it.

It seems we found efficient data structures. According to our recommen-

dations for problem solving, it is early to write the code of the program,

because we have to think of the efficiency of the algorithm.

Think About the Efficiency

Let’s check our idea against efficiency. What are we doing? We find all the

possible paths and we take the shortest. There’s no argument the algorithm

will not work, but if the labyrinth is way bigger, will it work fast?

To answer this question, we should think how much paths there are. If we

take an empty labyrinth, on the each step of the recursion we will have an

average number of 3 free cells to go (without the cell we are coming from).

If we have for example a labyrinth 10x10, the path could be 100 cells and

while we travel on each step we will have 3 neighboring cells. It seems the

numbers of paths are sort of 3 to the power of 100. It’s obvious the

algorithm will slow down the computer very much and very fast.

We found a serious problem with the algorithm. It will work very slowly,

even with small labyrinths, and with bigger ones it will not work at all! The

good news is that we haven’t written a single line of code and the general

change of our approach to the problem will not cost us much time.

Chapter 24. Sample Programming Exam – Topic #1 1015

Think of Another Idea

We found that walking through all the paths in the labyrinth is wrong

approach, so we have to think of another.

Let’s start with the initial cell and walk through all its neighboring cells and

mark them as visited. For each visited cell we can keep a number equal

to the number of cells, which we have travelled to reach it (the length

of the minimal path from the initial cell to the current cell).

For the initial cell the length of the path is 0. For its neighboring cells it should

be 1, because we can reach them from the initial cell with one move. For the

neighboring cells for the neighbors of the initial cell the length of the path is

2. We can continue this way and we will get to the following algorithm:

1. Write the length of the path 0 for the initial cell. Mark it as visited.

2. For each neighboring cell to the initial we mark the length of the path is

1. Mark these cells as visited.

3. For each cell, which is, neighboring to a cell with length of the path 1

and it is not visited, write the length of the path is 2. Mark the cells as

visited.

4. Continuing analogous, on the N step we find all the still unvisited cells,

which are on a distance of N moves from the initial cell and mark them

as visited.

Check the New Idea

To check whether the new idea for solving the “Escape from the Labyrinth”
problem is correct we can visualize the process. We take another labyrinth

to test our idea in a better way. At each step k our goal is to fill with the

number k all cells that can be reached in k steps. If at step 0 we fill the initial

cell with 0, at step 1 we fill all cells reachable in 1 step from the initial cell, at

step 2 we fill all cells reachable in 2 steps, etc. we will be sure that when we

fill a cell with a number, this number reflects the minimal number of steps

to reach this cell starting from the initial cell, right?

Step 0 – mark the distance from the initial cell to itself with 0 (mark the free

cells with "-"):

x x x x x x

- x - - - x

x 0 - x - x

x - - x - x

x - - - - x

- x x x - x

Step 1– mark with 1 all the neighbors to cells with a value of 0:

1016 Fundamentals of Computer Programming with C#

x x x x x x

- x - - - x

x 0 1 x - x

x 1 - x - x

x - - - - x

- x x x - x

Step 2 – mark with 2 all the passable neighbors to cells with value 1:

x x x x x x

- x 2 - - x

x 0 1 x - x

x 1 2 x - x

x 2 - - - x

- x x x - x

Step 3 – mark with 3 all passable neighbors to cells with value of 2:

x x x x x x

- x 2 3 - x

x 0 1 x - x

x 1 2 x - x

x 2 3 - - x

- x x x - x

Continuing this way, in a moment either we will reach a cell at the edge of the

labyrinth (an exit) or we will find such a cell is unreachable. It seems like our

algorithm works correctly. It will either find an exit or will find that there is

no reachable exit. If at some step an exit is found, the path to it will be

guaranteed to be the shortest possible (otherwise the exit should already

be found at some of the earlier steps).

Breaking the Problem into Subproblems

Having invented the idea for solving the labyrinth escaping problem, it will be

easy to break it into subproblems. The main subproblems could be: reading

the input labyrinth, finding the shortest path to some of its exits and

printing the results. The path finding subproblem could be further

divided into subproblems (steps) which we discussed in the previous section.

Chapter 24. Sample Programming Exam – Topic #1 1017

Checking the Performance of the New Algorithm

Because we never visit a cell more than once, the number of steps, which this

algorithm does, should not be big. For example, if we have a labyrinth with

size 100 x 100, it will have 10,000 cells, we will visit each of the cells at most

once and for each of them we will check every neighbor if it is free, i.e. we

will check 4 times each cell. At the end we will do at most 40,000 checks and

we will visit at most 10,000 cells. We will do a total amount of 50,000

operations. This means the algorithm will work instantly.

Check If the New Algorithm Is Correct

It seems this time we don’t have a problem with the performance. We have a

fast algorithm.

Let’s check if it is correct. For this purpose we draw a bigger and more

complex example on a sheet of paper, which has many exits and a lot of

paths, and we begin to perform the algorithm. After this we try with a

labyrinth with no exit. It seems the algorithm ends, but does not find an exit

so it’s working. We try another 2-3 examples and convince ourselves this

algorithm always finds the shortest path to an exit and always works

fast, because it visits each of the cells of the labyrinth at most once.

What Data Structures to Use?

With the new algorithm we walk consequently through all neighboring cells to

the initial cell. We can put them into a data structure, for example in an

array or better a list (or list of lists), because we can’t add in the array.

Then we take the list of the reached cells on the last step and we add

their neighbors in another list.

That’s how if we index the lists we have list0, which contains the initial cell,

list1, which contains passable neighboring cells to the initial, after this

list2, which contains passable neighbors to list1 and so on. At the N step

we have the listn, which contains all the cells, which we can reach in exactly

N steps, i.e. which are at a distance of n from the initial cell.

It seems we can use a list of lists, to keep the cells on each step. If we think

about it, to get the n list, we need the (n-1)-list. So it seems we don’t need

list of lists but only the list from the last step.

We can make general conclusion: cells are processed in the order of entry:

when the cells of step k are finished, then we process the cells from step k+1,

and just after them – the cells from step k+2, and so on. The process seems

like a queue: earlier accessed cells are processed earlier. If we dig a bit

inside, we will conclude, that we have just re-invented the Breadth-First-

Search algorithm (read about BFS in Wikipedia).

To implement the BFS algorithm we can use a queue of cells. For this

purpose we have to define class Cell, which contains the coordinates of

http://en.wikipedia.org/wiki/Breadth-first_search

1018 Fundamentals of Computer Programming with C#

given cell (row and column). We can keep the distance from each cell to the

initial cell in a matrix. If the distance is not calculated yet, we store -1.

If we think a little more, the distance from the initial cell can be kept in the

cell itself (in the class Cell) instead of creating a special matrix for the

distances. That way we will save memory.

Now we are clear about the data structures. Now we have to implement the

algorithm step by step.

Step 1 – The Class Cell

We can begin with the definition of the Cell class. We need it to save the

initial cell, from which begins the searching of the path. We will use auto-

implemented properties to make the code shorter and more readable. Here is

the Cell class:

public class Cell
{
 public int Row { get; set; }
 public int Column { get; set; }
 public int Distance { get; set; }
}

We can add a constructor to simplify the way we use this class:

public Cell(int row, int column, int distance)
{
 this.Row = row;
 this.Column = column;
 this.Distance = distance;
}

Generally it is a good idea to test the code after each step, but the above

code is too simple to be tested. We will test is later as part of some more

complex piece of code.

Step 2 – Reading the Input File

We will read the input file line by line using the well-known class

StreamReader. On the each of the lines we will analyze the characters and we

will write them in a matrix of characters. When we reach the character "*" we

will keep its coordinates in an instance of class Cell to know where to start

the searching of the shortest path for getting out of the labyrinth.

We can define a class Maze and keep the matrix of the labyrinth and the

initial cell in it:

Chapter 24. Sample Programming Exam – Topic #1 1019

Maze.cs

public class Maze
{
 private char[,] maze;
 private int size;
 private Cell startCell = null;

 public void ReadFromFile(string fileName)
 {
 using (StreamReader reader = new StreamReader(fileName))
 {
 // Read the maze size and create the maze
 this.size = int.Parse(reader.ReadLine());
 this.maze = new char[this.size, this.size];

 // Read the maze cells from the file
 for (int row = 0; row < this.size; row++)
 {
 string line = reader.ReadLine();
 for (int col = 0; col < this.size; col++)
 {
 this.maze[row, col] = line[col];
 if (line[col] == '*')
 {
 this.startCell = new Cell(row, col, 0);
 }
 }
 }
 }
 }
}

For simplicity we will skip processing the errors while reading and writing in a

file. When an exception occurs we will skip to catch it in the main method

and thus we will leave the CLR to print it on the console.

Testing the Input File Reading Code

We already have the class Maze and appropriate representation of data of the

input file. To be sure the written so far is correct we should test. We can

check if the matrix is truly filled as we print it on the console. The other

possibility is to view the values of the fields in the class Maze through the

debugger of Visual Studio. We add a Main() method which invokes the maze

reading method and we test it:

1020 Fundamentals of Computer Programming with C#

static void Main()
{
 Maze maze = new Maze();
 maze.ReadFromFile("Problem2.in");
}

Through the Visual Studio debugger we get convinced that the input file is

correctly read from the input file:

Step 3 – Finding the Shortest Path

We can implement the algorithm directly from what we already discussed.

We must define a queue and put in its beginning the initial cell. Afterwards we

must take the cell in turn from the queue and add all of its passable unvisited

neighbors in a loop. At each step there is a chance to enter in a cell, which is

at the border of the labyrinth, and we see we have found an exit and the

searching ends. We repeat the loop until the queue is empty. At each

visitation of a given cell we check if it is free and if it is, we mark it as

impassable. This way we avoid repeatedly visiting the same cell.

Here is how the implementation of the algorithm looks like:

public int FindShortestPath()
{
 // Queue for traversing the cells in the maze
 Queue<Cell> visitedCells = new Queue<Cell>();
 VisitCell(visitedCells, this.startCell.Row,
 this.startCell.Column, 0);

 // Perform Breath-First-Search (BFS)
 while (visitedCells.Count > 0)
 {
 Cell currentCell = visitedCells.Dequeue();
 int row = currentCell.Row;

Chapter 24. Sample Programming Exam – Topic #1 1021

 int column = currentCell.Column;
 int distance = currentCell.Distance;
 if ((row == 0) || (row == size - 1)
 || (column == 0) || (column == size - 1))
 {
 // We are at the maze border
 return distance + 1;
 }
 VisitCell(visitedCells, row, column + 1, distance + 1);
 VisitCell(visitedCells, row, column - 1, distance + 1);
 VisitCell(visitedCells, row + 1, column, distance + 1);
 VisitCell(visitedCells, row - 1, column, distance + 1);
 }

 // We didn't reach any cell at the maze border -> no path
 return -1;
}

private void VisitCell(Queue<Cell> visitedCells,
 int row, int column, int distance)
{
 if (this.maze[row, column] != 'x')
 {
 // The cell is free --> visit it
 maze[row, column] = 'x';
 Cell cell = new Cell(row, column, distance);
 visitedCells.Enqueue(cell);
 }
}

Checking after Step 3

Before the next step, we must test, to check our algorithm. We must try

the normal case and the border cases, when there is no exit, when we step

on an exit, when the input file doesn’t exist or the square matrix is with size

of 0. Only then can we start doing the next step. Let’s start with testing the

normal (typical) case. We create the following code to quickly test it:

static void Main()
{
 Maze maze = new Maze();
 maze.ReadFromFile("Problem2.in");
 Console.WriteLine(maze.FindShortestPath());
}

1022 Fundamentals of Computer Programming with C#

We run the above code over the sample input file from the problem

description and it works. The code correctly returns the length of the

shortest path to the nearest exit:

9

Now let’s test the border cases, e.g. a labyrinth of size 0. Unfortunately

we get the following result:

Unhandled Exception: System.NullReferenceException: Object
reference not set to an instance of an object.
 at Maze.FindShortestPath()

We’ve made a mistake. The problem is when the variable, in which we keep

the initial cell, is initialized with null. This can happen in many scenarios. If

the labyrinth has no cells (e.g. size of 0) or the initial cell is missing, the

result that the program should return is -1, but not an exception.

To fix the bug we just found we can add a check in the beginning of the

FindShortestPath() method:

public int FindShortestPath()
{
 if (this.startCell == null)
 {
 // Start cell is missing -> no path
 return -1;
 }
 …

We retest the code with the typical and the border cases. After the fix it

seems the algorithm works correctly now.

Step 4 – Writing the Result to a File

It remains to write the result of the FindShortestPath() to the output file.

This is a trivial problem:

public void SaveResult(String fileName, int result)
{
 using (StreamWriter writer = new StreamWriter(fileName))
 {
 writer.WriteLine("The shortest way is: " + result);
 }
}

Here is how the complete source code of the solution looks:

Chapter 24. Sample Programming Exam – Topic #1 1023

Maze.cs

using System;
using System.IO;
using System.Collections.Generic;

public class Maze
{
 private const string InputFileName = "Problem2.in";
 private const string OutputFileName = "Problem2.out";

 public class Cell
 {
 public int Row { get; set; }
 public int Column { get; set; }
 public int Distance { get; set; }

 public Cell(int row, int column, int distance)
 {
 this.Row = row;
 this.Column = column;
 this.Distance = distance;
 }
 }

 private char[,] maze;
 private int size;
 private Cell startCell = null;

 public void ReadFromFile(string fileName)
 {
 using (StreamReader reader = new StreamReader(fileName))
 {
 // Read maze size and create maze
 this.size = int.Parse(reader.ReadLine());
 this.maze = new char[this.size, this.size];

 // Read the maze cells from the file
 for (int row = 0; row < this.size; row++)
 {
 string line = reader.ReadLine();
 for (int col = 0; col < this.size; col++)
 {
 this.maze[row, col] = line[col];

1024 Fundamentals of Computer Programming with C#

 if (line[col] == '*')
 {
 this.startCell = new Cell(row, col, 0);
 }
 }
 }
 }
 }

 public int FindShortestPath()
 {
 if (this.startCell == null)
 {
 // Start cell is missing -> no path
 return -1;
 }

 // Queue for traversing the cells in the maze
 Queue<Cell> visitedCells = new Queue<Cell>();
 VisitCell(visitedCells, this.startCell.Row,
 this.startCell.Column, 0);

 // Perform Breath-First-Search (BFS)
 while (visitedCells.Count > 0)
 {
 Cell currentCell = visitedCells.Dequeue();
 int row = currentCell.Row;
 int column = currentCell.Column;
 int distance = currentCell.Distance;
 if ((row == 0) || (row == size - 1)
 || (column == 0) || (column == size - 1))
 {
 // We are at the maze border
 return distance + 1;
 }

 VisitCell(visitedCells, row, column + 1, distance + 1);
 VisitCell(visitedCells, row, column - 1, distance + 1);
 VisitCell(visitedCells, row + 1, column, distance + 1);
 VisitCell(visitedCells, row - 1, column, distance + 1);
 }

 // We didn't reach any cell at the maze border -> no path
 return -1;

Chapter 24. Sample Programming Exam – Topic #1 1025

 }

 private void VisitCell(Queue<Cell> visitedCells,
 int row, int column, int distance)
 {
 if (this.maze[row, column] != 'x')
 {
 // The cell is free --> visit it
 maze[row, column] = 'x';
 Cell cell = new Cell(row, column, distance);
 visitedCells.Enqueue(cell);
 }
 }

 public void SaveResult(string fileName, int result)
 {
 using (StreamWriter writer = new StreamWriter(fileName))
 {
 writer.WriteLine(result);
 }
 }

 static void Main()
 {
 Maze maze = new Maze();
 maze.ReadFromFile(InputFileName);
 int pathLength = maze.FindShortestPath();
 maze.SaveResult(OutputFileName, pathLength);
 }
}

Testing the Complete Solution of the Problem

After we have a solution of the problem we must test it. We have already

tested the typical case and the border cases (like missing exit or when

the initial position stays at the labyrinth edge). We will execute these

tests again to get convinced that the algorithm behaves correctly:

Input Output Input Output Input Output Input Output

0 -1 2
00
xx

-1 3
0x0
x*x
0x0

-1 3
000
000
00*

1

1026 Fundamentals of Computer Programming with C#

The algorithm works correctly. The output for each of the test is correct.

It remains to test with a large labyrinth (performance test), for example

1000 x 1000. We can make such a labyrinth very easy – with copy / paste.

We perform the test and we convince ourselves the program is working

correctly for the big test and works extremely fast – there is no delay.

While testing we should try every way to break our solution. We run a

few more difficult examples (for example a labyrinth with passable cells in

the form of spiral). We can put large labyrinth with a lot of paths, but without

exit. We can try whatever else we wish.

At the end we make sure, that we have a correct solution and we pass to

the next problem from the exam.

Problem 3: Store for Car Parts

A company is planning to create a system for managing a store for auto

parts. A single part can be used for different car models and it has following

characteristics: code, name, category (e.g. suspension, tires and wheels,

engine, accessories and etc.), purchase price, sale price, list of car

models, with which it is compatible (each car is described with brand, model

and year of manufacture, e. g. Mercedes C320, 2008) and manufacturing

company. Manufacturing companies are described with name, country,

address, phone and fax.

Design a set of classes with relationships between them, which model the

data for the store. Write a demonstration program, which demonstrates

the classes and their all functionality work correctly with some sample data.

Inventing an Idea for Solution

We have a non-algorithmic problem which is intended to check whether the

students at the exam know how to use object-oriented programming

(OOP), how to design classes and relationships between them to model real-

world objects (object-oriented analysis and design) and how to use

appropriate data structures to hold collections of objects.

We are required to create an aggregation of classes and relationships between

them, which have to describe the data of the store. We have to find which

nouns are important for solving the problem. They are objects from the real

world, which correspond to classes.

Which are these nouns that interest us? We have a store, car parts, cars

and manufacturing companies. We have to create a class defining a store.

It could be named Shop. Other classes are Part, Car and Manufacturer. In

the requirements of the problem there are other nouns too, like code for one

part or year of manufacturing of given car. For these nouns we are not

creating individual classes, but instead these will be fields in the already

created classes. For example in the Part class there will be let’s say a field

code of string type.

Chapter 24. Sample Programming Exam – Topic #1 1027

We already know which will be our classes, and fields to describe them.

We have to identify the relationships between the objects.

Checking the Idea

We will not check the idea because there is nothing to be proven with

examples and counterexamples or checked whether it will work. We need to

write few classes to model a real-world situation: a store for car parts.

What Data Structures to Use to Describe the Relationship

between Two Classes?

The data structures, needed for this problem, are of two main groups:

classes and relationships between the classes. The interesting part is

how to describe relationships.

To describe a relationship (link) between two classes we can use an array.

With an array we have access of its elements by index, but once it is created

we can’t change its length. This makes it uncomfortable for our problem,

because we don’t know how many parts we will have in the store and more

parts can be delivered or somebody can buy parts so we have to delete or

change the data. List<T> is more comfortable. It has the advantages of an

array and also is with variable length and it is easy to add or delete elements.

So far it seems List<T> is the most appropriate for holding aggregations of

objects inside another object. To be convinced we will analyze a few more

data structures. For example hash-table – it is not appropriate in this case,

because the structure “parts” is not of the key-value type. It would be

appropriate if each of the parts in the store has unique number (e.g. barcode)

and we needed to search them by this unique number. Structures like stack

and queue are inappropriate.

The structure “set” and its implementation HashSet<T> is used when we have

uniqueness for given key. It would be good sometimes to use this structure

to avoid duplicates. We must recall that HashSet<T> requires the methods

GetHashCode() and Equalsſ…ƀ to be correctly defined by the T type.

Our final decision is to use List<T> for the aggregations and HashSet<T> for

the aggregations which require uniqueness.

Dividing the Task into Subtasks

Now we have to think from where to start writing the code. If we start to

write the Shop class, we will need the Part class. This reminds us we will

have to start with a class, which does not depend on others. We will divide

the writing of each class to Ȉ subtask, and we will start from the independent

classes:

- Class describing a car – Car

- Class describing manufacturer of parts – Manufacturer

- Class or enumeration for the categories of the parts – PartCategory

1028 Fundamentals of Computer Programming with C#

- Class describing part for a car – Part

- Class for the store – Shop

- Class for testing rest of the classes with sample data – TestShop

Implementation: Step by Step

We start writing classes, which we described in our idea. We will create them

in the same sequence as in the list above.

Step 1: The Class Car

We start solving the problem by defining the class Car. In the definition we

have three fields, which keep the manufacturer, the model and the year of

manufacturing of the car and the standard method ToString(), which returns

a human-readable string holding the information about the car. We define the

class Car in the following way:

Car.cs

public class Car
{
 private string brand;
 private string model;
 private int productionYear;

 public Car(string brand, string model, int productionYear)
 {
 this.brand = brand;
 this.model = model;
 this.productionYear = productionYear;
 }

 public override string ToString()
 {
 return "<" + this.brand + "," + this.model + ","
 + this.productionYear + ">";
 }
}

Note that the class Car is designed to be immutable. This means that once

created, the car’s properties cannot be later modified. This design is not
always the best choice. Sometimes we want the class properties to be freely

modifiable; sometimes. For our case the immutable design will work well.

Testing the Class Car

Once we have the class Car, we could test it by the following code:

Chapter 24. Sample Programming Exam – Topic #1 1029

Car bmw316i = new Car("BMW", "316i", 1994);
Console.WriteLine(bmw316i);

The result is as expected:

<BMW,316i,1994>

We are convinced the class Car is correct so far and we can continue with the

other classes.

Step 2: The Class Manufacturer

We have to implement the definition of the class Manufacturer, which

describes the manufacturer for given part. It will have five fields – name,

country, address, phone number and fax. The class will be immutable,

because we will not need to change its members after creation. We also

define the standard method ToString() for representing the object as

human-readable string.

Manufacturer.cs

public class Manufacturer
{
 private string name;
 private string country;
 private string address;
 private string phoneNumber;
 private string fax;

 public Manufacturer(string name, string country,
 string address, string phoneNumber, string fax)
 {
 this.name = name;
 this.country = country;
 this.address = address;
 this.phoneNumber = phoneNumber;
 this.fax = fax;
 }

 public override string ToString()
 {
 return this.name + " <" + this.country + "," + this.address
 + "," + this.phoneNumber + "," + this.fax + ">";
 }
}

1030 Fundamentals of Computer Programming with C#

Testing the Class Manufacturer

We test the class Manufacturer just like we tested the class Car. It works.

Step 3: The Part Category Enumeration

Part categories are fixes set of values and do not have additional details

(like name, code and description). This makes them perfect to be modeled as

enumeration:

PartCategory.cs

public enum PartCategory
{
 Engine,
 Tires,
 Exhaust,
 Suspention,
 Brakes
}

Step 4: The Class Part

Now we have to define the class Part. Its definition will include the

following fields: name, code, category, list with cars, where we can use the

given part, starting and closing price and manufacturer. Here we will use the

data structure HashSet<Car> to hold all compatible cars.

The field that keeps the manufacturer of the part will be of Manufacturer

class, because the task requires us to keep additional information about the

manufacturer. If it was required to keep only the name of the manufacturer

(as in the case with class Car) this class should not be necessary. We would

have a field of string type.

We need a method for adding a car (object of type Car) to the list of cars (in

HashSet<Car>). It will be named AddSupportedCar(Car car).

Below is the code of the class Part which is also designed as set of

immutable fields (except that it accepts adding cars):

Part.cs

public class Part
{
 private string name;
 private string code;
 private PartCategory category;
 private HashSet<Car> supportedCars;
 private decimal buyPrice;

Chapter 24. Sample Programming Exam – Topic #1 1031

 private decimal sellPrice;
 private Manufacturer manufacturer;

 public Part(string name, decimal buyPrice, decimal sellPrice,
 Manufacturer manufacturer, string code,
 PartCategory category)
 {
 this.name = name;
 this.buyPrice = buyPrice;
 this.sellPrice = sellPrice;
 this.manufacturer = manufacturer;
 this.code = code;
 this.category = category;
 this.supportedCars = new HashSet<Car>();
 }

 public void AddSupportedCar(Car car)
 {
 this.supportedCars.Add(car);
 }

 public override string ToString()
 {
 StringBuilder result = new StringBuilder();
 result.Append("Part: " + this.name + "\n");
 result.Append("-code: " + this.code + "\n");
 result.Append("-category: " + this.category + "\n");
 result.Append("-buyPrice: " + this.buyPrice + "\n");
 result.Append("-sellPrice: " + this.sellPrice + "\n");
 result.Append("-manufacturer: " + this.manufacturer +"\n");
 result.Append("---Supported cars---" + "\n");
 foreach (Car car in this.supportedCars)
 {
 result.Append(car);
 result.Append("\n");
 }
 result.Append("----------------------\n");
 return result.ToString();
 }
}

In the class Part we use HashSet<Car> so it is necessary to redefine the

methods Equalsſ…ƀ and GetHashCode() for the class Car:

1032 Fundamentals of Computer Programming with C#

// гhe Equalsſ…ƀ and GetHashCodeſƀ methods for the class Car

public override bool Equals(object obj)
{
 Car otherCar = obj as Car;
 if (otherCar == null)
 {
 return false;
 }
 bool equals =
 object.Equals(this.brand, otherCar.brand) &&
 object.Equals(this.model, otherCar.model) &&
 object.Equals(this.productionYear,otherCar.productionYear);
 return equals;
}

public override int GetHashCode()
{
 const int prime = 31;
 int result = 1;
 result = prime * result + ((this.brand == null) ? 0 :
 this.brand.GetHashCode());
 result = prime * result + ((this.model == null) ? 0 :
 this.model.GetHashCode());
 result = prime * result + this.productionYear;
 return result;
}

Testing the Class Part

We test the class Part. It is a bit more complicated than when testing the

classes Car and Manufacturer, because Part it is more complex class. We

can create a part, assign all its properties and print it:

Manufacturer bmw = new Manufacturer("BWM",
 "Germany", "Bavaria", "665544", "876666");
Part partEngineOil = new Part("BMW Engine Oil",
 633.17m, 670.0m, bmw, "Oil431", PartCategory.Engine);
Car bmw316i = new Car("BMW", "316i", 1994);
partEngineOil.AddSupportedCar(bmw316i);
Car mazdaMX5 = new Car("Mazda", "MX5", 1999);
partEngineOil.AddSupportedCar(mazdaMX5);
Console.WriteLine(partEngineOil);

Seems like the result is correct:

Chapter 24. Sample Programming Exam – Topic #1 1033

Part: BMW Engine Oil
-code: Oil431
-category: Engine
-buyPrice: 633.17
-sellPrice: 670.0
-manufacturer: BWM <Germany,Bavaria,665544,876666>
---Supported cars---
<BMW,316i,1994>
<Mazda,MX5,1999>

Before we can continue with the next class, we could test for duplicated

cars in the set of supported cars for certain part. Duplicates are not allowed

by design and we should check whether this is enforced:

Manufacturer bmw = new Manufacturer("BWM",
 "Germany", "Bavaria", "665544", "876666");
Part partEngineOil = new Part("BMW Engine Oil",
 633.17m, 670.0m, bmw, "Oil431", PartCategory.Engine);
partEngineOil.AddSupportedCar(new Car("BMW", "316i", 1994));
partEngineOil.AddSupportedCar(new Car("BMW", "X5", 2006));
partEngineOil.AddSupportedCar(new Car("BMW", "X5", 2007));
partEngineOil.AddSupportedCar(new Car("BMW", "X5", 2006));
partEngineOil.AddSupportedCar(new Car("BMW", "316i", 1994));
Console.WriteLine(partEngineOil);

The result is correct. The duplicated cars are taken into account only once:

Part: BMW Engine Oil
-code: Oil431
-category: Engine
-buyPrice: 633.17
-sellPrice: 670.0
-manufacturer: BWM <Germany,Bavaria,665544,876666>
---Supported cars---
<BMW,316i,1994>
<BMW,X5,2006>
<BMW,X5,2007>

Step 5: The Class Shop

We already have all needed classes for creating the class Shop. It will have

two fields: name and list of parts, which are for sale. The list will be

List<Part>. We will add the method AddPart(Part part), with which we

1034 Fundamentals of Computer Programming with C#

will add new parts. With a redefined ToString() we will print the name of the

shop and the parts in it.

Here is an example of implementation of our class Shop holding the catalog of

auto parts (its name is immutable but it can add parts):

Shop.cs

public class Shop
{
 private string name;
 private List<Part> parts;

 public Shop(string name)
 {
 this.name = name;
 this.parts = new List<Part>();
 }

 public void AddPart(Part part)
 {
 this.parts.Add(part);
 }

 public override string ToString()
 {
 StringBuilder result = new StringBuilder();
 result.Append("Shop: " + this.name + "\n\n");
 foreach (Part part in this.parts)
 {
 result.Append(part);
 result.Append("\n");
 }
 return result.ToString();
 }
}

It might be a subject of discussion whether we should use List<Part>

or Set<Part> for the parts in the car shop. The set data structure has an

advantage that it avoids any duplicates. Thus if we have for example few

tires of certain model, they will be found only once in the set. To use set we

need to be sure the parts are uniquely identified by their code or by some

other unique identifier. In our case we assume we could have parts with

exactly the same code, name, etc. which come at different buy and sell prices

(e.g. if the prices change over the time). So we need to allow duplicated parts

Chapter 24. Sample Programming Exam – Topic #1 1035

and thus using a set will not be appropriate. Parts in the shop will be kept

in List<Part>.

We will test the class Shop though the especially written class TestShop.

Step 6: The Class TestShop

We created all classes we need. We have to create one more, with which we

will have to demonstrate the usage of the rest of the classes. It will be

named TestShop. In the Main() method we will create two manufacturers

and a few cars. We will add them to two parts. We will add the parts to the

Shop. At the end we will print everything on the console.

TestShop.cs

public class TestShop
{
 static void Main()
 {
 Manufacturer bmw = new Manufacturer("BWM",
 "Germany", "Bavaria", "665544", "876666");
 Manufacturer lada = new Manufacturer("Lada",
 "Russia", "Moscow", "653443", "893321");

 Car bmw316i = new Car("BMW", "316i", 1994);
 Car ladaSamara = new Car("Lada", "Samara", 1987);
 Car mazdaMX5 = new Car("Mazda", "MX5", 1999);
 Car mercedesC500 = new Car("Mercedes", "C500", 2008);
 Car trabant = new Car("Trabant", "super", 1966);
 Car opelAstra = new Car("Opel", "Astra", 1997);

 Part cheapPart = new Part("Tires 165/50/R13", 302.36m,
 345.58m, lada, "T332", PartCategory.Tires);
 cheapPart.AddSupportedCar(ladaSamara);
 cheapPart.AddSupportedCar(trabant);

 Part expensivePart = new Part("Universal Car Engine",
 6733.17m, 6800.0m, bmw, "EU33", PartCategory.Engine);
 expensivePart.AddSupportedCar(bmw316i);
 expensivePart.AddSupportedCar(mazdaMX5);
 expensivePart.AddSupportedCar(mercedesC500);
 expensivePart.AddSupportedCar(opelAstra);

 Shop newShop = new Shop("Tuning Pro Shop");
 newShop.AddPart(cheapPart);
 newShop.AddPart(expensivePart);

1036 Fundamentals of Computer Programming with C#

 Console.WriteLine(newShop);
 }
}

This is the result of the execution of the above code:

Shop: Tuning Pro Shop

Part: Tires 165/50/R13
-code: T332
-category: Tires
-buyPrice: 302.36
-sellPrice: 345.58
-manufacturer: Lada <Russia,Moscow,653443,893321>
---Supported cars---
<Lada,Samara,1987>
<Trabant,super,1966>

Part: Universal Car Engine
-code: EU33
-category: Engine
-buyPrice: 6733.17
-sellPrice: 6800.0
-manufacturer: BWM <Germany,Bavaria,665544,876666>
---Supported cars---
<BMW,316i,1994>
<Mazda,MX5,1999>
<Mercedes,C500,2008>
<Opel,Astra,1997>

Testing the Solution

At the end we need to test our code. In fact we have done this in the class

TestShop. This doesn’t mean that we have tested entirely our problem. We

have to check the border cases, for example when some of the lists are

empty. Let’s make a little change of the code in Main() method, to start the

program with an empty list:

static void Main()
{
 Shop emptyShop = new Shop("Empty Shop");
 Console.WriteLine(emptyShop);

Chapter 24. Sample Programming Exam – Topic #1 1037

 Manufacturer lada = new Manufacturer("Lada",
 "Russia", "Moscow", "653443", "893321");
 Part tires = new Part("Tires 165/50/R13", 302.36m,
 345.58m, lada, "T332", PartCategory.Tires);

 Manufacturer bmw = new Manufacturer("BWM",
 "Germany", "Bavaria", "665544", "876666");
 Part engineOil = new Part("BMW Engine Oil",
 633.17m, 670.0m, bmw, "Oil431", PartCategory.Engine);
 engineOil.AddSupportedCar(new Car("BMW", "316i", 1994));

 Shop ultraTuningShop = new Shop("Ultra Tuning Shop");
 ultraTuningShop.AddPart(tires);
 ultraTuningShop.AddPart(engineOil);

 Console.WriteLine(ultraTuningShop);
}

The result of this test is:

Shop: Empty Shop

Shop: Ultra Tuning Shop

Part: Tires 165/50/R13
-code: T332
-category: Tires
-buyPrice: 302.36
-sellPrice: 345.58
-manufacturer: Lada <Russia,Moscow,653443,893321>
---Supported cars---

Part: BMW Engine Oil
-code: Oil431
-category: Engine
-buyPrice: 633.17
-sellPrice: 670.0
-manufacturer: BWM <Germany,Bavaria,665544,876666>
---Supported cars---
<BMW,316i,1994>

1038 Fundamentals of Computer Programming with C#

From the result it seems the first shop is empty and in the second shop the

list of cars for the first part is empty. This is the correct output. Therefore

our program works correctly with the border case of empty lists.

We can continue testing with other border cases (e.g. missing part name,

missing price, missing manufacturer, etc.), as well as with some kind of

performance test (e.g. shop with 300,000 parts for 5,000 cars and 200

manufacturers). We will leave this for the readers.

Exercises

1. You are given an input file mails.txt, which contains names of users

and their email addresses. Each line of the file looks like this:

<first name> <last name> <username>@<host>.<domain>

There is a requirement for email addresses – <username> can be a

sequence of Latin letters (a-z, A-Z) and underscore (_), <host> is a

sequence of lower Latin letters (a-z), and <domain> has a limit of 2 to 4

lower Latin letters (a-z). Following the guidelines for problem solving

write a program, which finds the valid email addresses and writes

them together with the names of the users (in the same format as in the

input) to an output file valid-mails.txt.

Sample input file (mails.txt):

Steve Smith steven_smith@yahoo.com
Peter Miller pm<5.gmail.com
Svetlana Green svetlana_green@hotmail.com
Mike Johnson mike*j@888.com
Larry Cutts larry.cutts@gmail.com
Angela Hurd angel&7@freemail.hut.fi

Output file (valid-mails.txt):

Steve Smith steven_smith@yahoo.com
Svetlana Green svetlana_green@hotmail.com
Larry Cutts larry.cutts@gmail.com

2. You are given a labyrinth, which consists of N x N squares, and each of

them can be passable (0) or not (x).

In one of the squares our hero Jack (*) is positioned. Two squares are

neighbors, if they have a common wall. At one step Jack can pass from

one passable square to its neighboring passable square. Write a program,

which prints the number of possible exits from given labyrinth. At the

figure below we have 7 possible exits, reachable from the start position.

Chapter 24. Sample Programming Exam – Topic #1 1039

x x x 0 x x

0 x 0 0 0

0 * 0 x 0 0

x x x x 0 x

0 0 0 0 0 x

0 x 0 x x 0

The input data is read from a text file named Labyrinth.in. At the first

line in the file is the number N (2 < N < 1000). At the next N lines there

are N characters, each either "0" or "x" or "*". The output is a single

number and should be printed in the file Labyrinth.out.

3. You are given a labyrinth, which consists of N x N squares, each of it

can be passable or not. Passable cells consist of lower Latin letter

between "a" and "z", and the non-passable – '#'. In one of the squares is

Jack. It is marked with "*".

Two squares are neighbors, if they have common wall. At one step Jack

can pass from one passable square to its neighboring passable square.

When Jack passes through passable squares, he writes down the letters

from each square. At each exit he gets a word. Write a program, which

from a given labyrinth prints the words, which Jack gets from all the

possible exits. At the example below Jack can get 10 different words

corresponding to its 10 possible paths he could find to some of the exits:

a, az, aza, madk, madkm, madam, madamk, dir, did, difid.

a # # k m #

z # a d a #

a * m # # #

d # # # #

r i f i d #

d # d # t

The input data is read from a text file named Labyrinth.in. At the first

line in the file there is the number N (2 < N < 10). At each of the next N

lines there are N characters, each of them is either Latin letter between

"a" and "z" or "#" (impassable wall) or "*" (Jack). The output must be

printed in the file Labyrinth.out.

4. A company plans to create a system for managing of a sound

recording company. The sound recording company has a name,

address, owner and performers. Each performer has name, nickname

and created albums. Albums are described with name, genre, year of

creation, number of sold copies and list of songs. The songs are

described with name and duration. Design a set of classes with

1040 Fundamentals of Computer Programming with C#

relationships between each other, which models the data of the record

company. Implement a test class, which demonstrates the work of rest of

the classes.

5. A company plans on creating of a system for managing a company

for real estates. The company has name, owner, tax ID, employees and

has a list of estates for sale. Employees are described with name, work

position and experience. The company sells several types of estates:

apartments, houses, undeveloped areas and shops. All of them are

characterized with area, price of square meters and location. For some of

them there is additional information. For the apartments there is data

about the number of the floor, whether there is an elevator in the block,

and if it is furnished. For the houses the data is – square meters for the

undeveloped area and for the developed (yard), how many floors it has

and whether it is furnished. Design a set of classes with relationships

between them, which model the data for the company. Implement a

test class, which demonstrates the work of the rest of the classes.

Solutions and Guidelines

1. The problem is similar to the first problem from our sample exam. Again

we can read line by line the input file and with appropriate regular

expression to check the email addresses. Test the solution carefully

before you go to the next problem.

2. Possible exits from the labyrinth are all the cells, which are positioned

at the border of the labyrinth and are reachable from the initial cell. The

problem could be solved using BFS with just little modification of the

solution of the “Escape from Labyrinth”. Test your solution carefully!

3. The problem is similar to the previous one, but all possible paths to the

exit are required. You can do recursive search with backtracking (DFS)

and keep in a StringBuilder the letters to the exit, to create the words,

which you have to print. With bigger labyrinths the problem has no

optimal solution (there is no way to print all the paths, without generating

all of them, but they grow exponentially to the labyrinth size). Test

carefully your solution and think of special cases that need special care.

4. You must write the required classes: MusicCompany, Artist, Album,

Song. Think of the links between classes and what data structures to use

for them. For the printing redefine the method ToString() from

System.Object. Test all methods and the border cases.

5. The classes you must write are EstateCompany, Employee, Apartment,

House, Shop and UndevelopedArea. Export all shared characteristics in

separate abstract base class Estate. Encapsulate all fields with

properties. Override the method ToString(), which to collect the data of

the corresponding class and print it to the console. Test all methods and

special border cases (like missing property values).

